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ABSTRACT

We present preliminary results of study in which we used
inductive learning to acquire search-control rules for plan-
ning. Using a simulator for a vehicle driving domain, we
built example traces, executed them in simulation, and pro-
duced training examples for learning. Then, using a leave-
one-trace-out methodology, we evaluated the J48 and CN2
learning algorithms on the tasks of determining whether the
actions of staying in a lane and of changing lanes were valid
or invalid. Results suggest that, in the simple scenarios con-
sidered, these learning algorithms acquired useful search-
control rules, and more importantly, that these rules gener-
alized well to other driving situations.
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1. INTRODUCTION

In this paper, we describe work in progress on the use of in-
ductive learning for acquiring search-control rules for plan-
ning. For the domain of vehicle driving, we constructed sce-
narios, which were configurations of the roadway, and ex-
ample traces, which were successful and unsuccessful paths
down the roadway for the scenarios. Then, using a simula-
tor for the domain, we executed the traces to generate train-
ing data for inductive learning. The learning task was to
acquire rules for determining if changing lanes and staying
in the current lane would be invalid or valid actions.

We evaluated the J48 [1] and the CN2 [2] learning sys-
tems on both tasks. Since generalization to unseen traces is
most important, we evaluated both methods using a “leave-
one-trace-out” methodology. Empirical results suggest that
both methods acquired rules that performed well on exam-
ples derived from unseen traces.
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2. LEARNING SEARCH-CONTROL RULES

Concept learning is the task of generating concept descrip-
tions from training data for the purpose of predicting ob-
servations not present in the original training set. Al-
though this form of inductive learning is our focus, some
researchers have used deductive forms of learning [3], such
as explanation-based learning [4], for improving planning
(e.g., [5]).

Planning is the task of generating a sequence of actions
that achieve a goal [6]. To accomplish this task, classic
planners start at an initial state and search the plan space for
a goal state. The space of plans for non-trivial domains is
likely to be large, so search of this space is equally likely to
be intractable. Incorporating domain knowledge to control
search is one method that not only reduces the complexity
of search [5, 7], but also improves plan quality (e.g., the
number of steps) [8–10].

Unfortunately, search-control knowledge is often diffi-
cult to obtain. It can be challenging to elicit, and intuitive
knowledge can produce unintuitive results once incorpo-
rated into the planning system. This has prompted some re-
searchers to investigate approaches that use inductive learn-
ing to automatically acquire search-control knowledge or
search-control rules [5, 7–11]. Based on this research, we
have begun investigating the use of inductive learning for
acquiring search-control rules for a simple driving domain,
as discussed in the next section.

3. TASK AND PROBLEM DESCRIPTION

Our driving domain consists of a one-way road with two
lanes. The National Institute of Standards and Technology
(NIST) built our simulator for this domain that lets cars ac-
celerate, decelerate, and change lanes. By using parameters,
users can define passing lanes and place on the roadway
penetrable obstacles (e.g., a safety cone) and impenetrable
obstacles (e.g., a parked car).



To date, we have considered two tasks:

1. changing lanes with the presence of a no-passing area,
and

2. avoiding penetrable and impenetrable obstacles.

For each of these tasks, we designed a set of scenarios,
which consisted of a particular configuration of the road-
way. For example, for the second task, one such scenario
was the presence of an impenetrable obstacle in the right
lane midway between the start and goal positions.

For each scenario, we generated a set of example traces
that moved the car from a start position to a goal position.
For instance, for the aforementioned scenario, one trace
started the car in the right lane, navigated it around the ob-
stacle, and stopped it in the right lane. Another started it in
the right lane, navigated it around the obstacle, and stopped
it in the left lane. For inductive learning, we needed both
positive and negative examples of state changes, so we also
formed traces that forced the car to collide with obstacles,
to change lanes in a no-passing zone, and to change lanes
multiple times.

The execution of each example trace produced a set of
training examples. Each training example consisted of a set
of Boolean flags indicating various states of the car’s cur-
rent position, of its position if it were to stay in the same
lane, and of its position if it were to change lanes. For the
car’s current position, flags indicated whether the car is trav-
eling too fast, the presence of lane markings and barriers,
and whether the road surface is suitable for driving. Simi-
lar flags were present for the new positions in the same and
new lanes. There were also flags to indicate whether an ob-
stacle is present, whether it is penetrable or impenetrable,
and whether it is moving.

For each step of the example trace, the simulator gen-
erated a set of these flags along with the label S if the car
stayed in the same lane and with the label C if it changed
lanes. The simulator also indicated whether the action was
valid (V) or invalid (I).

The learning task was to acquire two sets of rules: one
for determining if staying in the same lane is a valid action,
the other for determining if changing lanes is a valid action.
Our intent is to use these sets of rules to control search in a
planning system for this driving domain.

To simplify the construction of these traces, we took ad-
vantage of properties of the domain and the learning meth-
ods. We took advantage of the symmetry of the domain. As
constructed, the simulator did not differentiate between the
left lane and the right lane. There was simply the other lane
into which the car could change. This greatly simplified
the problem since training examples and control rules could
be lane independent. (Unfortunately, this property will not
exist in domains with, say, three or more lanes.)

There was also considerable redundancy in the space of
examples, which reduced the number of distinct training ex-
amples that each trace produced. For instance, a lane free
of obstacles in a no-passing zone yields the same training
examples for its entire length. Symmetry, as discussed pre-
viously, also contributed to this redundancy.

We also took advantage of the ability of the learning
methods to generalize the training examples and, in turn,
the example traces. Rather than being exhaustive when con-
structing traces, we attempted to construct traces that would
produced examples at the boundaries of concepts [12, 13],
for these are critical for discrimination. For instance, we
constructed traces just before and just after the onset of a
passing zone. Our intent was to minimize the number of
traces required for learning, but to maximize the coverage
of the induced rules.

After developing the collection of example traces, we
evaluated two inductive learners on the tasks of determin-
ing if staying in the same lane or changing lanes are valid
actions. We selected CN2 [2] and J48, which is an imple-
mentation of C4.5 [14] present in Weka [1]. These learn-
ing methods have been well studied over the years, have
performed well on a variety of tasks, and produce readable
concept descriptions, which we deemed important for the
initial stages of this project.

CN2 [2] uses as its concept description a set of if-then
rules, each of which has a set of conditions as its antecedent
and has a class label as its consequent. When classify-
ing an unknown instance, CN2 uses the attribute values of
the instance to find a rule with conditions that are all true,
in which case, it predicts the class label in the rule’s an-
tecedent as that of the instance. To generate such rules, CN2
takes a set of positive and negative training examples, gener-
ates a general description for the positive class, and special-
izes it without “covering” or “intersecting” examples from
the negative class. This has been described as general-to-
specific search for hypotheses, and is in contrast to AQ19
[15], which learns rules through specific-to-general search.

J48 [1] uses an n-ary tree as its concept description,
which has internal nodes that correspond to attributes and
leaf nodes that correspond to class labels. Each internal
node has links for the values or range of values for the at-
tribute. To classify an unknown instance, J48 traverses the
tree from the root to a leaf node, a traversal guided by the
attribute values present in the instance. It returns the la-
bel of the leaf node as the prediction for the instance. To
construct a decision tree, J48 finds the attribute that best
splits the training examples into the desired classes, creates
a node for the attribute and child nodes for each value of
the attribute. It distributes the examples to the child nodes
based on the values of the selected attribute, which it subse-
quently removes from further consideration. The algorithm
proceeds recursively for each child node until producing



a node with examples of one class, whereby it stores the
class label in the leaf node. J48 uses the gain ratio as the
metric for selecting attributes, and it prunes trees to prevent
overtraining [14].

To evaluate these methods, we took the approach of
“leaving-one-trace-out.” Most traditional methods of eval-
uating learning algorithms focus on separating all available
examples into the training and testing sets (e.g., [16–18]),
but in this domain, the performance of a classifier on exam-
ples from unseen traces is more important than such perfor-
mance on randomly selected examples from all traces. One
could also investigate the degree to which control rules gen-
eralize across scenarios, but we have not yet pursued such
an evaluation.

We have used a similar methodology in other work [19],
in which we evaluated learning methods using data derived
from overhead images. We trained methods on data ob-
tained from a set of images and tested them on data derived
from an unseen image. Such an evaluation matches more
closely with how image-understanding systems would be
used: One would rarely apply learning methods to the im-
ages on which they are trained. It is much more likely that
they would be applied to newly collected images.

We found this approach useful for our driving domain.
Specifically, we began with a collection of example traces
and selected one for testing. We generated training exam-
ples by running the simulator on all of the traces. After
building classifiers with CN2 and J48 using the training ex-
amples derived from the traces in the training set, we ap-
plied them to the training examples obtained from the sin-
gle test trace. During performance, we measured accuracy
on the testing examples. We repeated this process for each
trace in the collection and averaged accuracy over all of the
runs, which we present in the next section.

4. RESULTS

We present empirical results for two tasks: the lane-change
task and the obstacle-avoidance task. The former posed a
relatively easy learning problem because of the small num-
ber of training examples, so in the next sections, we mostly
discuss the results for the latter task.

4.1. Lane-change Task

For the lane-change task, we developed 29 example traces,
and applied the methodology described in the previous sec-
tion. This was a simple task that yielded relatively few
distinct training examples, because of the redundancy and
symmetry of this task. As a result, both learning methods
achieved 100% accuracy on the examples derived from the
test traces.

4.2. Obstacle-avoidance Task

The obstacle-avoidance task, with its more degrees of varia-
tion, yielded a more interesting problem for machine learn-
ing. To date, we have developed eight different scenarios
and have developed 40 traces for five of the eight. For each
scenario, we applied the leave-one-trace-out methodology
to the example traces. In the following paragraphs, we will
present results for Scenario 1, which consisted of a single
penetrable obstacle in the left lane.

Some of the rules that CN2 produced were quite intuitive.
For example, for the first scenario, CN2 produced the fol-
lowing rules indicating whether changing lanes was a valid
action:

IF changeObstaclesClass0Obs = F

THEN class = V [2 0]

IF changeObstaclesClass0Obs = T

THEN class = I [3 1]

(DEFAULT) class = V [5 1]

The attribute changeObstaclesClass0Obs indicates
whether there is a class 0 (i.e., penetrable) obstacle in the
opposite lane. The first rule states that it is valid to change
lanes if there is no such obstacle in the opposite lane. The
second states that it is invalid to change lanes if an obstacle
is present. If neither of these rules is true, then the default is
to return that an action is valid. The accuracy of this rule set
on examples derived from a test trace was 100%. The aver-
age accuracy of rule sets across all examples derived from
unseen traces was 83%.

The numbers within brackets indicate the number of ex-
amples each rule covers1 from the training set for each class.
For instance, the first rule covers two examples from the
valid class and covers none from the invalid class.

To determine whether staying in the same lane was valid,
CN2 produced the following rules:

IF sameRoadLaneMarking = T

THEN class = V [42 0]

IF sameObstaclesClass0Obs = F

AND numberLaneChanges < 0.50

THEN class = V [48 1]

IF sameObstaclesClass0Obs = T

AND numberLaneChanges > 0.50

THEN class = I [0 1]

1A rule covers an example if the example’s attribute values satisfy the
rule’s conditions.



IF sameObstaclesClass0Obs = T

THEN class = I [2 2]

IF sameRoadLaneMarking = F

AND numberLaneChanges > 0.50

THEN class = I [22 3]

(DEFAULT) class = V [102 5]

These rules are similar to those for predicting whether
changing lanes is a valid action. The accuracy of these rules
across examples derived from unseen traces was 94%, with
most of the accuracy being on the valid class. Notice that
the last rule—not the default rule—covers twenty-two valid
examples and three invalid examples even though it is a rule
for predicting invalid actions.

The distribution of the default rule is the same as the
distribution of training set, so notice that there were 102
training examples for the valid class, but only 5 training ex-
amples for the invalid class. A classifier that always predicts
the majority class would attain an accuracy of roughly 95%,
assuming the distribution of the training set is representative
of that of the target environment. This skew in the data set
presents a few challenges, which we discuss further in the
next section.

5. DISCUSSION

During our study, we have encountered several challenges.
One challenge was developing example traces. We created
these manually, which was tedious, but possible only be-
cause of the small size of our domain. It is unclear how one
might construct such training traces for a high-fidelity, re-
alistic simulation. One possible solution is to have people
use a high-fidelity simulator and take their valid and invalid
traces as training data.

Another challenge was determining which traces to use
for training and which to use for testing. One ideally wants
to evaluate the degree to which learned control rules gen-
eralize to examples derived from unseen traces. In this
study, we trained and tested using examples derived from
all example traces using the method of leave-one-trace-out,
which accomplished this goal, but it may be better to train
on a representative set and test on an exhaustive set of ex-
ample traces or training examples. This would be an ideal
evaluation, especially since learned rules may eventually
control a real vehicle, but since it requires an exhaustive
set of testing examples, it may be impractical for domains
with a large number of potential traces.

We considered constructing training examples directly,
rather than deriving them from traces executed by the sim-
ulator. Given the current driving domain, since there were
fourteen binary attributes describing states, this would have

required labeling 2
14

= 16, 384 training examples for each
task. Some of these would not correspond to legal states or
to states of interest. For instance, we did not consider mov-
ing obstacles in this study, so this flag would always be false
and thus irrelevant for classification. In the end, we deter-
mined that identifying and labeling legal training examples
was simply too cumbersome and would be an impractical
scheme for real-world driving domains.

As mentioned in Section 4, there was a considerable
skew in the training sets. That is, there were many more
examples of valid actions than of invalid actions. This is in-
tuitive since the roadway was relatively free of obstacles.
Consequently, under most circumstances, staying in one
lane or changing lanes will be a valid action. Naturally, it is
those “other circumstances” with which we are concerned.

The problem with skewed data sets is that most learning
algorithms will simply learn to predict the majority class,
which was an issue in our work on detecting rooftops in
overhead images [19]. Indeed, it is the examples of the mi-
nority class—the invalid class—that are most important, but
they are underrepresented in the training set.

If we can perform a cost analysis of the driving domain,
then methods exist to take such costs into account to form a
classifier of minimal cost or of minimal risk [20, 21]. Such
analyses are often difficult to obtain, but we can use re-
ceiver operating characteristic (ROC) analysis [22] to evalu-
ate learning methods over all possible costs [17, 19, 23, 24],
provided that a domain expert can identify an acceptable op-
erating point.

Minimum-risk classifiers and ROC analysis assume that
the cost of error on instances of a class are uniform, and un-
fortunately, for the driving domain, this is not the case. For
instance, even though driving over a traffic cone and driving
over—or attempting to drive over—a parked car are both in-
valid actions, the cost of driving over the cone is less than
that of driving over the car. Boosting [25, 26] is an ensemble
method that weights individual examples of a training set
and produces predictions consistent with those weights. It
may be applicable to this problem, but we are still left with
the problem of developing a scheme for assigning weights
to individual examples.

A final concern of ours is that of optimal local behav-
ior versus optimal global behavior. As we have described,
we are using learning algorithms to acquire search-control
rules. These are a local representation of what to do in each
state. However, it is not yet clear if these local rules will
lead to better global performance of the planner. Thus our
next task is to incorporate the learned rules into the planning
system and continue our empirical inquiry.



6. CONCLUSION

In this paper, we have examined an application of inductive
learning to the problem of learning search-control knowl-
edge. We evaluated two learning methods, J48 and CN2,
for the task of determining if staying in a lane is a valid
action and if changing lanes is a valid action. Empirical re-
sults imply that such methods acquired useful control rules
and that these rules generalized to unseen driving situations.
We plan to expand our efforts by incorporating learned rules
into the target planning system, obtaining a more sophisti-
cated simulator, and evaluating the algorithms over a range
of misclassification costs using ROC analysis.
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